Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches

نویسندگان

  • Domingo Mery
  • Kevin W. Bowyer
چکیده

It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes –like facial expressions– can be used in human– computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automated recognition of facial attributes by proposing a new general approach called Adaptive Sparse Representation of Random Patches (ASR+). In the learning stage, random patches are extracted from representative face images of each class (e.g., in gender recognition –a two-class problem–, images of females/males) in order to construct representative dictionaries. In the testing stage, random test patches of the query image are extracted, and for each test patch a dictionary is built concatenating the ‘best’ representative dictionary of each class. Using this adapted dictionary, each test patch is classified following the Sparse Representation Classification (SRC) methodology. Finally, the query image is classified by patch voting. Thus, our approach is able to learn a model for each recognition task dealing with a larger degree of variability in ambient lighting, pose, expression, occlusion, face size and distance from the camera. Experiments were carried out on seven face databases in order to recognize facial expression, gender, race and disguise. Results show that ASR+ deals well with unconstrained conditions, outperforming various representative methods in the literature in many complex scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic facial attribute analysis via adaptive sparse representation of random patches

It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes, such as facial expressions, can be used in human–computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automate...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition

In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014